

"МУК 4.1.1263-03. 4.1. Методы контроля. Химические факторы. Измерение массовой концентрации фенолов общих и летучих флуориметрическим методом в пробах питьевой воды и воды поверхностных и подземных источников водопользования. Методические указания" (утв. Минздравом России 01.04.2003)

Документ предоставлен КонсультантПлюс

www.consultant.ru

Дата сохранения: 24.09.2018

Источник публикации

М.: Федеральный центр госсанэпиднадзора Минздрава России, 2003

Сборник методических указаний "Измерение массовой концентрации химических веществ люминесцентными методами в объектах окружающей среды" (МУК 4.1.1255 - 1274-03)

Примечание к документу

Документ включен в Перечень документов в области стандартизации, содержащих правила и методы исследований (испытаний) и измерений, в том числе правила отбора образцов, необходимые для применения и исполнения требований технического регламента Таможенного союза "О безопасности продукции легкой промышленности" (ТР ТС 017/2011) и осуществления оценки (подтверждения) соответствия продукции (Решение Комиссии Таможенного союза от 09.12.2011 N 876).

Документ включен в Перечень стандартов, содержащих правила и методы исследований (испытаний) и измерений, в том числе правила отбора образцов, необходимые для применения и исполнения требований технического регламента Таможенного союза "О безопасности игрушек" (ТР ТС 008/2011) и осуществления оценки соответствия объектов технического регулирования (Решение Комиссии Таможенного союза от 23.09.2011 N 798).

Документ включен в Перечень документов в области стандартизации, содержащих правила и методы исследований (испытаний) и измерений, в том числе правила отбора образцов, необходимые для применения и исполнения требований технического регламента Таможенного союза "О безопасности продукции, предназначенной для детей и подростков" (ТР ТС 007/2011) и осуществления оценки (подтверждения) соответствия продукции (Решение Комиссии Таможенного союза от 23.09.2011 N 797).

Документ включен в Перечень основных действующих нормативно-методических документов по методам лабораторного и инструментального контроля в системе государственного санитарно-эпидемиологического нормирования (Письмо Роспотребнадзора от 02.12.2008 N 01/14262-8-32).

Документ введен в действие с 1 сентября 2003 года.

Взамен МУК 4.1.069-96.

Название документа

"МУК 4.1.1263-03. 4.1. Методы контроля. Химические факторы. Измерение массовой концентрации фенолов общих и летучих флуориметрическим методом в пробах питьевой воды и воды поверхностных и подземных источников водопользования. Методические указания" (утв. Минздравом России 01.04.2003)

Утверждаю Главный государственный санитарный врач Российской Федерации, Первый заместитель Министра здравоохранения Российской Федерации Г.Г.ОНИЩЕНКО 1 апреля 2003 года

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

ИЗМЕРЕНИЕ МАССОВОЙ КОНЦЕНТРАЦИИ ФЕНОЛОВ ОБЩИХ И ЛЕТУЧИХ ФЛУОРИМЕТРИЧЕСКИМ МЕТОДОМ В ПРОБАХ ПИТЬЕВОЙ ВОДЫ И ВОДЫ ПОВЕРХНОСТНЫХ И ПОДЗЕМНЫХ ИСТОЧНИКОВ ВОДОПОЛЬЗОВАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ МУК 4.1.1263-03

Дата введения 1 сентября 2003 года

- 1. Разработаны: Федеральным научным центром гигиены им. Ф.Ф. Эрисмана (Т.В. Юдина), НПФ "Люмэкс", Санкт-Петербург (Е.А. Волосникова, Д.Б. Гладилович, И.Б. Любченко, Н.А. Майорова, Н.А. Тишкова, Н.А. Лебедева), Федеральным центром госсанэпиднадзора Минздрава России (И.В. Брагина, Е.С. Шальникова, Н.С. Ластенко).
- 2. Утверждены и введены в действие Главным государственным санитарным врачом Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации Г.Г. Онищенко 1 апреля 2003 г.
 - 3. Введены взамен МУК 4.1.057 4.1.081-96.

1. Введение

1.1. Назначение и область применения

Настоящие методические указания устанавливают методику выполнения измерения массовой концентрации фенолов (общих и летучих) в пробах воды поверхностных и подземных источников водопользования, а также питьевой воды флуориметрическим методом.

Диапазон измеряемых концентраций фенолов 0,0005 - 25 мг/куб. дм. При концентрации фенолов свыше 1 мг/куб. дм пробу необходимо разбавить дистиллированной водой до достижения концентрации от 0,1 до 1,0 мг/куб. дм.

Мешающее влияние нефтепродуктов устраняется при подготовке проб к анализу.

1.2. Физико-химические и токсикологические свойства фенолов

Фенолы являются производными ароматических углеводородов, в которых один или несколько атомов водорода в ядре замещены на гидроксильные группы.

Все фенолы обладают кислотными свойствами, в водных растворах едких щелочей образуют соли феноляты, которые легко гидролизуются водой и разлагаются кислотами (даже угольной), выделяя свободные фенолы. На воздухе фенолы постепенно окисляются, приобретая розовую, красную или темную окраску.

Токсическое действие фенолов: одноатомные фенолы - сильные нервные яды, вызывающие общее отравление организма, при попадании на кожу действуют прижигающе. Высшие члены ряда (например, тимол) в производственных условиях малоопасны.

Многоатомные фенолы могут быть причиной кожных заболеваний, при длительном поступлении в организм способны угнетать ферменты, в первую очередь окислительного процесса, иногда действуют как разобщители дыхания и фосфорилирования. Продукты окисления фенолов менее токсичны. (Вредные вещества в промышленности. Т. 1: Органические соединения: Справочник/Под общ. ред. Н.В. Лазарева, 7-е изд. Л.: Химия, 1977. 608 с.)

Фенолы относятся к веществам 4-го класса опасности.

ПДК фенола в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования составляет 0,001 мг/куб. дм (Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования. ГН 2.1.5.689-98), в питьевой воде 0,001 мг/куб. дм (Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. СанПиН 2.1.4.1074-01).

2. Характеристика погрешности измерений

Характеристика погрешности измерений (граница допускаемой относительной погрешности измерений для доверительной вероятности Р = 0,95) приведена в табл. 1.

Таблица 1

ХАРАКТЕРИСТИКА ПОГРЕШНОСТИ ИЗМЕРЕНИЙ ДЛЯ ДОВЕРИТЕЛЬНОЙ ВЕРОЯТНОСТИ P = 0.95

Диапазон концентраций, мг/куб. дм	Характеристика погрешности измерений, +/- дельта, %
от 0,0005 до 0,001 включительно свыше 0,001 до 0,005 включительно свыше 0,005 до 0,02 включительно свыше 0,02 до 25,0 включительно	65 50 25 10

3. Метод измерения

3.1. Метод А - измерение концентрации общих фенолов

Флуориметрический метод измерения массовой концентрации фенолов основан на извлечении фенолов из воды бутилацетатом, реэкстракции их в водный раствор гидроксида натрия и измерении массовой концентрации на анализаторе "Флюорат-02" по интенсивности флуоресценции фенолов после подкисления реэкстракта. В процессе измерения происходит возбуждение флуоресценции фенолов, ее регистрация и автоматическое вычисление концентрации фенола при помощи градуировочной характеристики, заложенной в памяти анализатора.

3.2. Метод Б - измерение концентрации летучих фенолов

Флуориметрический метод измерения массовой концентрации летучих фенолов включает операцию перегонки пробы воды с помощью перегонного устройства и измерение концентрации фенолов в отгоне по методу, изложенному в п. 3.1.

Метод рекомендуется для анализа окрашенных, мутных вод, а также вод с большим содержанием органических веществ, препятствующих разделению фаз при экстракции, и проб, содержащих лигнин.

4. Средства измерений, вспомогательные устройства, реактивы и материалы

При выполнении измерений применяют следующие средства измерений, реактивы, вспомогательные устройства и материалы.

4.1. Средства измерений

Анализатор жидкости "Флюорат-02" или другой люминесцентный анализатор, флуориметр или спектрофлуориметр, удовлетворяющий требованиям указанных ТУ	ТУ 4321-001-20506233-94
Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и	FOCT 24104
ценой деления 1,0 мг, любого типа	
Пипетки с одной отметкой 2-го класса	FOCT 29169
точности вместимостью 5, 10, 25 куб. см	
Пипетки градуированные 2-го класса	FOCT 29227
точности вместимостью 1, 2, 5	
и 10 куб. см	
Колбы мерные 2-100-2, 2-50-2	FOCT 1770
Цилиндры мерные 2-го класса	FOCT 1770
точности вместимостью 100 и 250 куб. см	
Государственный стандартный образец	
состава раствора фенола: массовая	
концентрация 1 мг/куб. см, границы	
допускаемого значения относительной	
погрешности +/- 1%.	

Допускается использование средств измерений с аналогичными или лучшими метрологическими характеристиками. Средства измерений должны быть поверены в установленные сроки.

4.2. Реактивы

Вода дистиллированная	FOCT 6709
Гексан, х.ч.	ТУ 6-09-4521-77
Бутиловый эфир уксусной кислоты	FOCT 22300
(бутилацетат), х.ч.	
Соляная кислота, х.ч.	FOCT 3118
Натрия гидроксид, х.ч.	FOCT 4328
Кислота фосфорная, х.ч.	FOCT 6552
Медь серно-кислая 5-водная, ч.д.а.	FOCT 4165.

Допускается применение реактивов, изготовленных по иной нормативно-технической документации с техническими характеристиками не хуже, чем у указанных.

4.3. Вспомогательные устройства и материалы

Стаканы лабораторные термостойкие	FOCT	25336
вместимостью 50, 100, 500 куб. см		
Колбы конические вместимостью	FOCT	25336
100, 500 и 1000 куб. см типа Кн-1		
Воронки делительные вместимостью	FOCT	25336
500, 250, 100 и 50 куб. см типа ВД-1		
Аппарат для отгонки фенолов, стеклянный		
Нагревательное устройство закрытого	FOCT	14919
типа или электроплитка бытовая		

Бумага индикаторная универсальная

ТУ 6-09-1181-76.

5. Подготовка к выполнению измерений

Перед выполнением измерений должны быть проведены следующие работы: отбор и консервирование проб, подготовка анализатора к работе, контроль чистоты растворителей для экстракции фенолов, приготовление вспомогательных растворов и растворов для градуировки прибора и градуировка анализатора.

5.1. Отбор и консервирование проб

Общие требования к отбору проб по ГОСТ Р 51592. Отбор проб питьевой воды по ГОСТ Р 51593, из источников водоснабжения по ГОСТ 17.1.5.05.

Отбор проб воды производят в стеклянные бутыли, предварительно ополоснутые отбираемой водой. Методика подготовки стеклянной посуды изложена в Прилож. А.

Анализ необходимо произвести в течение 8 ч с момента отбора. При необходимости консервирования пробу подкисляют раствором фосфорной кислоты по п. 5.3.6 до рН 4 (контроль по универсальному индикатору) и добавляют раствор сернокислой меди по п. 5.3.5 из расчета 5 куб. см на 1 куб. дм пробы. Срок хранения законсервированной пробы - не более 3 суток.

Объемы проб, отбираемые для анализа, зависят от ожидаемой концентрации фенолов и составляют не менее 500 куб. см в диапазоне 0,0005 - 0,01 мг/куб. дм, не менее 250 куб. см в диапазоне 0,01 - 0,1 мг/куб. дм и не менее 100 куб. см при больших концентрациях.

5.2. Подготовка анализатора к работе

Подготовку прибора к работе производят в соответствии с руководством по эксплуатации. В канал возбуждения помещают светофильтр N 1, в канал регистрации - N 3.

5.3. Приготовление вспомогательных растворов

5.3.1. Подготовка дистиллированной воды для приготовления растворов фенола

Дистиллированную воду для приготовления растворов фенола с концентрацией 0,1 мг/куб. дм и менее и для разбавления проб перед использованием кипятят, охлаждают и хранят в стеклянной склянке с притертой пробкой во избежание насыщения кислородом воздуха. Срок хранения - 1 сутки.

5.3.2. Раствор гидроксида натрия, массовая доля 5%

В стакан из термостойкого стекла или коническую колбу помещают 95 куб. см воды и постепенно, тщательно перемешивая, добавляют 5 г гидроксида натрия. Раствор хранят в полиэтиленовой бутыли. Срок хранения - 2 месяца.

5.3.3. Раствор фенола, массовая концентрация 1 мг/куб. дм

Методика приготовления раствора приведена в табл. 2.

Срок хранения раствора фенола с концентрацией 1 мг/куб. дм - 2 недели, с концентрацией 100 мг/куб. дм - 2 месяца. Растворы хранят в холодильнике.

Таблица 2

МЕТОДИКА ПРИГОТОВЛЕНИЯ РАСТВОРА С МАССОВОЙ КОНЦЕНТРАЦИЕЙ ФЕНОЛА 1 МГ/КУБ. ДМ

Компоненты		Концентрация фенола, мг/куб. дм	Относительная погрешность для P = 0,95, %
ГСО состава раствора фенола Вода п. 5.3.1	5 до 50	1000 100	1,0 1,2
Раствор N 1 Вода п. 5.3.1	1 до 100	1,0	1,5

5.3.4. Раствор соляной кислоты, молярная концентрация 5 моль/куб. дм

К 300 куб. см дистиллированной воды постепенно при перемешивании приливают 200 куб. см концентрированной соляной кислоты. Раствор хранят в стеклянной бутыли. Срок хранения не ограничен.

5.3.5. Раствор меди серно-кислой

В 100 куб. см дистиллированной воды растворяют 10 г меди серно-кислой пятиводной. Хранят в стеклянной склянке с притертой пробкой. Срок хранения - 3 месяца.

5.3.6. Раствор фосфорной кислоты, объемная доля 10%

Дистиллированной водой разбавляют 10 куб. см концентрированной фосфорной кислоты до 100 куб. см. Срок хранения не ограничен.

5.3.7. Раствор гидроксида натрия, массовая доля 1%

Раствор готовят разбавлением 20 куб. см раствора гидроксида натрия по п. 5.3.2 до 100 куб. см дистиллированной водой.

Срок хранения раствора в сосуде из полиэтилена - 2 месяца.

5.4. Контроль чистоты растворителей для экстракции фенолов

В делительную воронку вместимостью 50 куб. см наливают 10 куб. см бутилацетата и приливают 10 куб. см раствора гидроксида натрия с массовой долей 1% по п. 5.3.7. После интенсивного перемешивания и расслоения фаз производят их разделение. Верхний слой отбрасывают, а нижний сливают в лабораторный стакан, добавляют по каплям раствор соляной кислоты по п. 5.3.4, раствор после добавления каждой капли перемешивают и определяют значение рН при помощи универсальной индикаторной бумаги. Требуемое значение рН 3 - 6. Полученный раствор (в дальнейшем - контрольный раствор) подвергают анализу на приборе "Флюорат-02".

Производят предварительную градуировку прибора.

Для анализаторов модификаций "Флюорат-02-1" и "Флюорат-02-3" установку режима "Фон" проводят по дистиллированной воде, а параметра "А" в режиме "Градуировка" - по раствору фенола с концентрацией 1 мг/куб. дм (п. 5.3.3). Параметр "С" задают равным 1,000.

Для анализаторов модификаций "Флюорат-02-2М" и "Флюорат-02-3М" вводят в память значения C0 = 0,000; C1 = 1,000. Значение параметра "J0" устанавливают по дистиллированной воде, а параметра "J1" - по раствору фенола с концентрацией 1 мг/куб. дм (п. 5.3.3). При этом значения параметров "C2" - "C6" и "J2" - "J6" должны быть равны нулю.

Определяют концентрацию фенола в контрольном растворе в режиме "Измерение". Если измеренное значение превышает 0,02 мг/куб. дм, то растворитель необходимо подвергнуть очистке.

С этой целью в делительной воронке вместимостью 1000 куб. см встряхивают 700 - 750 куб. см растворителя с 50 куб. см раствора гидроксида натрия по п. 5.3.2 в течение 3 мин. Контролируют рН нижнего слоя при помощи универсальной индикаторной бумаги. Если реакция среды сильно щелочная (рН > 10), то растворитель промывают дистиллированной водой порциями по 50 куб. см до достижения нейтральной реакции промывных вод.

Затем растворитель сушат над безводным хлористым кальцием и перегоняют, собирая фракцию, кипящую при 124 - 126 °C.

Аналогичным образом можно регенерировать собираемые остатки бутилацетата.

Примечание. Если после обработки бутилацетата раствором щелочи нижний слой имеет более низкое значение pH (pH <= 10), то обработку раствором гидроксида натрия повторяют до достижения сильно щелочной реакции нижнего слоя.

5.5. Приготовление градуировочных растворов

В делительную воронку вместимостью 50 куб. см помещают 10 куб. см дистиллированной воды, добавляют 10 куб. см бутилацетата и проводят экстракцию в течение 30 с. Водный (нижний) слой отбрасывают, а к органическому слою пипеткой добавляют 10 куб. см раствора гидроксида натрия по п. 5.3.7 и проводят реэкстракцию в течение 30 с. Нижний слой помещают в сухой стаканчик вместимостью 25 - 50 куб. см и добавляют по каплям раствор соляной кислоты по п. 5.3.4, перемешивая и контролируя рН раствора при помощи универсального индикатора. Требуемое значение рН 3 - 6 (раствор N 1). Одновременно готовят аналогичным образом градуировочный раствор, используя для этого вместо дистиллированной воды 10 куб. см раствора фенола по п. 5.3.3 с концентрацией 1 мг/куб. дм (раствор N 2).

5.6. Градуировка анализатора и контроль стабильности градуировочной характеристики

Градуировку осуществляют путем измерения сигналов флуоресценции растворов N 1 и 2, приготовленных по п. 5.4.

Для модификаций "Флюорат-02-1" и "Флюорат-02-3"

Установку режима "Фон" производят при помощи раствора N 1, а установление параметра "А" в режиме "Градуировка" (нажатием клавиши "Г") - при помощи раствора N 2. Параметр "С" задается равным 1,000. Допускается вводить известное значение множителя "А" с клавиатуры прибора.

Для модификаций "Флюорат-02-2М" и "Флюорат-02-3М"

Входят в меню "Градуировка", устанавливают C0=0 и C1=1,000. Значение параметра "J0" устанавливают по раствору N 1, а "J1" - по раствору N 2. При этом значения параметров "C2" - "C6" и "J2" - "J6" должны быть равны нулю.

Контроль стабильности градуировочной характеристики проводят не реже одного раза в неделю, а также при смене партий реактивов, стандартных образцов.

Контроль стабильности градуировочной характеристики состоит в измерении концентрации фенола в одной или нескольких смесях (табл. 3), обработанных в соответствии с п. 5.4.

Градуировка признается стабильной, если различие между измеренным и заданным значением концентрации фенола в смесях не превосходит 10% в диапазоне 1,0 - 0,2 мг/куб. дм и 20% при меньших концентрациях. При несоответствии полученных результатов указанным нормативам процесс градуировки повторяют.

При использовании других люминесцентных анализаторов градуировку и измерение проб производят в соответствии с руководством по эксплуатации.

Таблица 3

СМЕСИ ДЛЯ КОНТРОЛЯ СТАБИЛЬНОСТИ ГРАДУИРОВОЧНОЙ ХАРАКТЕРИСТИКИ АНАЛИЗАТОРА

N смеси	Компоненты	Объем, куб. см		Относительная погрешность (P = 0,95), %
1	Раствор фенола по п. 5.3.3		1,0	1,5
2	Раствор фенола по п. 5.3.3 Вода п. 5.3.1	50 до 100	0,5	1,7
3	Раствор фенола по п. 5.3.3 Вода п. 5.3.1	20 до 100	0,2	1,7
4	Раствор фенола по п. 5.3.3 Вода п. 5.3.1	10 до 100	0,1	1,7
5	Смесь N 2 Вода п. 5.3.1	5 до 50	0,05	1,9
6	Смесь N 2 Вода п. 5.3.1	5 до 100	0,025	1,9

6. Выполнение измерений

6.1. Метод А - измерение массовой концентрации общих фенолов

6.1.1. Дозирование пробы

Для выполнения анализа отбирают аликвотную порцию воды, объем которой регулируют в зависимости от предполагаемого значения концентрации согласно рекомендациям табл. 4.

Таблица 4

РЕКОМЕНДУЕМЫЕ ОБЪЕМЫ ПРОБ ВОДЫ, ЭКСТРАГЕНТА И РЕЭКСТРАГЕНТА И СТЕПЕНЬ КОНЦЕНТРИРОВАНИЯ (N) В ЗАВИСИМОСТИ ОТ ПРЕДПОЛАГАЕМОЙ КОНЦЕНТРАЦИИ ФЕНОЛОВ

Диапазон измеряе- мых концентраций, мг/куб. дм		гента, куб. см	Объем реэкст- рагента, куб. см	N
0,0005 - 0,01	250	25	5	50
0,01 - 0,1	100	10	10	10
0,1 - 1,0	10	10	10	1

Отбор проб для анализа производится мерным цилиндром (100 и 250 куб. см) или пипеткой (10 куб. см). При ожидаемой концентрации фенолов выше 1 мг/куб. дм пробу разбавляют до концентрации фенола от 0,1 до 1,0 мг/куб. дм. Разбавление (Q) равно соотношению объемов мерной колбы, в которой производится разбавление, и аликвотной порции пробы. Одновременно анализируют две аликвотные порции воды.

Примечание. Допускается изменять соотношения объемов проб, экстрагента и реэкстрагента и, как следствие, степень концентрирования N по сравнению с рекомендуемыми значениями, указанными в таблице 4, при обязательном соответствии фактической погрешности измерения характеристике погрешности (табл. 1).

6.1.2. Устранение мешающего влияния нефтепродуктов

Отмеренную аликвотную порцию пробы помещают в делительную воронку (вместимость воронки должна превосходить суммарный объем пробы и экстрагента в 1,5 - 2 раза), добавляют раствор гидроксида натрия по п. 5.3.2 из расчета 5 куб. см на 1 куб. дм пробы, приливают гексан и экстрагируют нефтепродукты путем переворачивания воронки в течение 30 с. После разделения гексановый (верхний) слой отбрасывают, а нижний вновь обрабатывают гексаном. Объем гексана при каждой обработке составляет 10 - 25 куб. см.

Примечание. После добавления раствора гидроксида натрия необходимо проверить pH смеси. Среда должна быть сильно щелочной (pH > 10). В противном случае добавляют дополнительное количество раствора гидроксида натрия до достижения указанных значений pH.

6.1.3. Экстракция фенолов из воды

После удаления нефтепродуктов к пробе добавляют раствор соляной кислоты по п. 5.3.4 до достижения значения рН 3 - 6 (контроль по универсальному индикатору). Затем к водному слою приливают бутилацетат. Объем экстрагента указан в табл. 4. Содержимое воронки перемешивают в течение 30 с путем ее переворачивания. После отстаивания и разделения нижний (водный) слой отбрасывают, а к верхнему (органическому) добавляют 5 или 10 куб. см реэкстрагента - раствора гидроксида натрия по п. 5.3.7 (объем приведен в табл. 4) и проводят реэкстракцию в течение 30 с. Нижний (водный) слой помещают в сухой стаканчик вместимостью 25 - 50 куб. см и добавляют по каплям раствор соляной кислоты по п. 5.3.4. Перемешивают и контролируют рН раствора после добавления каждой капли при помощи универсального индикатора. Требуемое значение рН 3 - 6. Обработанная таким способом проба готова к проведению измерений по п. 6.1.4.

6.1.4. Измерение массовой концентрации фенолов

Измеряют не менее двух раз массовую концентрацию фенолов в полученном растворе в режиме "Измерение" и находят среднее арифметическое. Полученные значения записывают в журнал.

6.1.5. Приготовление холостой пробы

Холостую пробу необходимо готовить только при работе с пробами в диапазоне концентраций 0,0005 - 0,01 мг/куб. дм. В качестве холостой пробы используют 10 куб. см дистиллированной воды, которая применялась для приготовления растворов для градуировки анализатора; объемы органического растворителя и гидроксида натрия совпадают с объемами, использованными при анализе проб. Проводят все операции по п. п. 6.1.2 - 6.1.4 аналогично анализируемой пробе. Полученные значения записывают в журнал.

6.2. Метод Б - измерение массовой концентрации летучих фенолов

Отбирают аликвотную порцию анализируемой пробы в соответствии с рекомендациями табл. 4, подкисляют ее до рН 1 - 2 раствором фосфорной кислоты по п. 5.3.6, добавляют 5 куб. см раствора сернокислой меди (п. 5.3.5) и осуществляют перегонку <*>. В приемник следует внести 5 куб. см раствора

гидроксида натрия по п. 5.3.2 и погрузить в него конец аллонжа. Отгоняют не менее 80% объема взятой пробы. Отгон переносят в делительную воронку и дважды обрабатывают 10 - 25 куб. см гексана. Гексан отбрасывают, а в водном слое определяют фенолы по п. 6.1.3 - 6.1.4.

<*> Если пробу консервировали согласно п. 5.1, то растворы фосфорной кислоты и серно-кислой меди не добавляют, если рН пробы менее двух. В противном случае добавляют раствор фосфорной кислоты по п. 5.3.6 до достижения значения рН 1 - 2.

При ожидаемой концентрации фенолов выше 1 мг/куб. дм пробу перед перегонкой или полученный отгон разбавляют дистиллированной водой до концентрации фенола от 0,1 до 1,0 мг/куб. дм.

При анализе проб в диапазоне концентраций 0,0005 - 0,01 мг/куб. дм проводят анализ холостой пробы, для чего в делительную воронку помещают 10 куб. см дистиллированной воды и проводят с ней все операции, предусмотренные п. п. 6.1.2 - 6.1.4. Объемы бутилацетата и раствора для реэкстракции соответствуют указанным в табл. 4.

Допускается изменять соотношения объемов проб, экстрагента и реэкстрагента и, как следствие, степень концентрирования N по сравнению с рекомендуемыми значениями, указанными в табл. 4, при обязательном соответствии фактической погрешности измерения характеристике погрешности (табл. 1).

7. Обработка результатов измерений

Массовую концентрацию фенолов в пробе воды вычисляют по формуле:

$$X = (C - C) \times Q / N,$$
 (1)

гле:

Х - концентрация фенолов в анализируемой пробе воды, мг/куб. дм;

С - измеренная концентрация фенолов в растворе, полученном MEN

из анализируемой пробы, мг/куб. дм;

С - измеренная концентрация фенолов в растворе, полученном хол

из холостой пробы, мг/куб. дм;

N - степень концентрирования (табл. 4);

Q - разбавление пробы; если пробу не разбавляют, то Q = 1. Если холостую пробу не готовят, то полагают C = 0.

8. Оформление результатов измерений

За результат анализа (Х) принимают среднее арифметическое

результатов параллельных определений X и X (X = (X + X) / 2), 1 2 1 2.

расхождение между которыми не превосходит значений норматива оперативного контроля сходимости d. Значения норматива контроля сходимости приведены в Прилож. Б. Значение d выбирают для среднего

арифметического Х.

Результат количественного анализа в документах, предусматривающих его использование, представляют одним из следующих способов:

Результат измерений должен оканчиваться тем же десятичным разрядом, что и погрешность. Результаты измерений регистрируют в протоколах, в которых указывают:

- ссылку на настоящий документ;
- описание пробы (номер, источник, дата отбора и анализа и т.п.);
- отклонения от текста методики при проведении измерений, если таковые имелись, и факторы, отрицательно влияющие на результаты анализа;
 - результат измерения и его погрешность;
 - фамилию исполнителя.

9. Контроль точности измерений

Контроль точности измерений (воспроизводимости и погрешности) проводят в соответствии с алгоритмом, изложенным в Прилож. Б. Нормативы контроля также приведены в Прилож. Б.

Приложение А (рекомендуемое)

ПОДГОТОВКА ХИМИЧЕСКОЙ ПОСУДЫ ДЛЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

При выполнении измерений массовой концентрации алюминия необходимо тщательно соблюдать чистоту химической посуды, руководствуясь следующими правилами.

- 1. Для мытья химической посуды разрешается использовать концентрированную серную кислоту или концентрированную азотную кислоту. Категорически запрещается использовать для мытья соду, щелочи, все виды синтетических моющих средств, хромовую смесь.
- 2. Посуда предварительно отмывается водопроводной водой, затем в нее наливают приблизительно на 1/2 объема кислоту (п. 1) и тщательно обмывают ею всю внутреннюю поверхность, а затем выливают в специальный сосуд. Пипетки при помощи груши несколько раз заполняют кислотой выше метки. После промывания посуды дистиллированной водой (не менее 5 раз) ее окончательно споласкивают бидистиллированной водой (2 3 раза).
- 3. Для каждого раствора необходимо использовать свою пипетку. Раствор из колбы наливают в стаканчик и из него набирают в пипетку. Запрещается погружать пипетку во весь объем раствора во избежание загрязнения.
- 4. Рекомендуется иметь отдельный набор посуды, который используется только для определения алюминия.

Приложение Б (обязательное)

КОНТРОЛЬ ТОЧНОСТИ ИЗМЕРЕНИЙ

1. Контроль воспроизводимости измерений

Периодичность контроля воспроизводимости измерений зависит от количества рабочих измерений за контролируемый период и определяется планами контроля.

Образцами для контроля являются пробы природных и питьевых вод. Объем отобранной для контроля пробы должен соответствовать удвоенному объему, необходимому по методике для проведения анализа.

Отобранный объем делят на две равные части и анализируют в точном соответствии с прописью методики, максимально варьируя условия проведения анализа, т.е. измерения проводят либо в разных лабораториях, либо в одной лаборатории разными исполнителями или одним исполнителем, но в разное время. Результаты контроля признаются удовлетворительными, если выполняется условие:

$$\begin{bmatrix} - & - & - \\ X & - & X \\ 1 & 2 \end{bmatrix}$$
 <= 0,01 x $X \times D$, (B.1)

где:

 $\stackrel{-}{\text{X}}$ - результат анализа этой же пробы, полученный другим $_2$

аналитиком с использованием другого набора мерной посуды и других партий реактивов, мг/куб. дм;

 \bar{X} - среднее арифметическое \bar{X} и \bar{X} , мг/куб. дм; 1 2

D - норматив контроля воспроизводимости измерений (табл. B.1), %.

Значение D выбирают для среднего арифметического X.

При превышении норматива контроля погрешности воспроизводимости процедуру контроля повторяют. При повторном превышении указанного норматива выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.

Таблица Б.1

НОРМАТИВЫ КОНТРОЛЯ СХОДИМОСТИ И ВОСПРОИЗВОДИМОСТИ ДЛЯ ДОВЕРИТЕЛЬНОЙ ВЕРОЯТНОСТИ Р = 0.95

Диапазон измерений,	Нормативы контроля	
мг/куб. дм	сходимости d (n = 2), %	воспроизводимости D (m = 2), %

Алюминий			
от 0,01 до 0,05 включительно	42	55	
свыше 0,05 до 0,2 включительно	20	35	
свыше 0,2 до 5,0 включительно	15	25	
n	инк		
от 0,005 до 0,1 включительно	28	34	
свыше 0,1 до 2,0 включительно	14	20	
E	Sop		
от 0,05 до 0,1 включительно	35	60	
свыше 0,1 до 0,5 включительно	20	40	
свыше 0,5 до 2,5 включительно	10	20	
свыше 2,5 до 5,0 включительно	5	12	
M	І едь		
от 0,005 до 0,01 включительно	25	60	
свыше 0,01 до 0,1 включительно	15	30	
Желез	во общее		
от 0,05 до 1,0 включительно	18	25	
свыше 1,0 до 5,0 включительно	14	20	
Ни	птрит		
от 0,005 до 0,01 включительно	25	50	
свыше 0,01 до 0,05 включительно	15	25	
свыше 0,05 до 1,0 включительно	12	20	
свыше 1,0 до 5,0 включительно	7	14	
Фторид			
от 0,1 до 0,5 включительно	15	20	
свыше 0,5 до 1,0 включительно	12	17	
свыше 1,0 до 2,5 включительно	8	11	
Фенолы			
от 0,0005 до 0,001 включительно	50	80	
свыше 0,001 до 0,005 включительно	35	55	
свыше 0,005 до 0,02	20	34	

включительно				
свыше 0,02 до 25,0 включительно	10	14		
п	Цинк			
от 0,005 до 0,1 включительно	28	34		
свыше 0,1 до 2,0 включительно	14	20		
P.	аПАВ			
от 0,025 до 0,1 включительно	50	65		
свыше 0,1 до 1,0 включительно	25	40		
свыше 1,0 до 2,0 включительно	15	25		
Формальдегид				
от 0,02 до 0,5 включительно	24	34		

2. Контроль погрешности измерений

Периодичность контроля погрешности измерений зависит от количества рабочих измерений за контролируемый период и определяется планами контроля.

Образцами для контроля являются пробы природных и питьевых вод. Объем отобранной пробы для контроля должен соответствовать удвоенному объему, необходимому для проведения анализа по методике.

Отобранный объем делят на две равные части, первую из которых анализируют в точном соответствии с прописью методики и получают результат анализа исходной рабочей пробы - Х, а во вторую часть делают добавку определяемого компонента и анализируют в точном соответствии с прописью методики, получая результат анализа рабочей пробы с добавкой - Х'.

Результаты анализа исходной рабочей пробы и рабочей пробы с добавкой получают по возможности в одинаковых условиях, т.е. их получает один аналитик с использованием одного набора мерной посуды, одной партии реактивов и т.д.

Величина добавки должна составлять от 50 до 150% от содержания алюминия в исходной пробе. Если содержание алюминия в исходной пробе меньше нижней границы диапазона измерений (0,01 мг/куб. дм), то величина добавки должна в 2 - 3 раза превышать нижнюю границу диапазона измерений.

Величину добавки (С , мг/куб. дм) рассчитывают по формуле:

гле: концентрация алюминия в стандартном образце C -(аттестованной смеси), использованном для внесения добавки, мг/куб. дм; V - объем стандартного образца (аттестованной смеси),

внесенного в качестве добавки, куб. см;

V - объем пробы, куб. см.

Объем добавки не должен превышать 5% объема пробы. Решение об удовлетворительной погрешности принимают при выполнении условия:

$$|X' - X - C| \le K$$
, (B.3)

гле:

Х - результат анализа рабочей пробы, мг/куб. дм;

X' - результат анализа рабочей пробы с добавкой алюминия, мг/куб. дм;

С - значение добавки алюминия, мг/куб. дм;

Д

К - норматив контроля погрешности измерений, мг/куб. дм.

Д

При внешнем контроле (P = 0,95) норматив контроля вычисляют по формуле:

где ДЕЛЬТА , ДЕЛЬТА - характеристика погрешности измерения \mathbf{x}

массовой концентрации алюминия в исходной пробе и пробе с добавкой алюминия соответственно, мг/куб. дм:

ДЕЛЬТА =
$$0,01$$
 х дельта х X;

где дельта , дельта - характеристика относительной X X'

погрешности измерения массовой концентрации алюминия в исходной пробе и пробе с добавкой алюминия соответственно (табл. 1), %.

Норматив контроля погрешности при внутрилабораторном контроле (P = 0.90) вычисляют по формуле:

При превышении норматива контроля погрешности процедуру контроля повторяют. При повторном превышении указанного норматива выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.